You are currently browsing the category archive for the ‘Marie La Palme Reyes’ category.

Une mise à jour du procès de Socrate montrant sa pertinence pour la démocratie d’aujourd’hui. LA VRAIE NATURE DE SOCRATE OU LE PROCÈS INACHEVÉ (2003) Creative Commons Attribution

Cette pièce a pour sujet les dernières heures de la vie du Général Jean-Victor Poncelet, né à Metz en 1788 et mort à Paris en 1867. Sur son lit de mort, le général se remémore l’une des périodes les plus heureuses de sa vie, lorsque après une longue marche dans les steppes glacées de la Russie, à l’hiver 1812, il arriva enfin dans les prisons de Saratoff, où reprenant goût à la vie, il découvrit les fondements de la géométrie projective. La pièce jette un regard sur les horreurs de la campagne de Russie par Napoléon en écoutant les réflexions de quelques personnages en butte à la faim, au froid, à la mort.

LE JEUNE HOMME ET LA MORT (LES DERNIÈRES HEURES DU GÉNÉRAL PONCELET) (2002)

Creative Commons Attribution

Cette pièce a pour sujet les trois dernières années de la courte vie mouvementée d’Évariste Galois (1811-1832), génial mathématicien français et républicain exalté, contemporain d’Alexandre Dumas, de François Vincent Raspail, de Stendhal et de Victor Hugo. Du suicide de son père, juillet 1829, à sa propre mort en duel, fin mai 1832, alors qu’il n’avait pas vingt et un ans, Évariste Galois a vécu la frustration de l’action politique manquée, l’exaspération devant l’incompréhension des autres face à ses découvertes mathématiques et les tiraillements d’amours malheureux.

LES TROIS SUICIDES D’ÉVARISTE GALOIS (2001)

Creative Commons Attribution

La Palme Reyes M., Macnamara J., Reyes G. E. and H. Zolfaghari (1999). Models for Non-Boolean Negations in Natural Languages based on Aspect Analysis. In Gabbay D. and H. Wansing (eds.). What is negation? Kluwer Academic Publishers. Dordrecht, Boston, London. pp 241-260.

Since antiquity two different negations in natural languages have been noted: predicate negation (`not honest’) and predicate term negation (`dishonest’). Aristotle tried to formalize them in his system of oppositions, distinguishing between affirmation and negation (`honest’ and `not honest’) and contraries (`honest’ and `dishonest’). The Stoics replaced Aristotle’s logic of terms by their logic of propositions. Although they considered three types of negation, none of them corresponded to Aristotle’s predicate term negation. Frege and modern logic have followed the Stoics in either identifying predicate term negation with predicate negation or in casting predicate term negation out of logic into the realm of pragmatics. Although an extensive literature has arisen on these issues, we have not found mathematical models. We propose category-theoretic models with two distinct negation operations, neither of them in general Boolean. We study combinations of the two (`not dishonest’) and sentential counterparts of each. We touch briefly on quantifiers and modalities. The models are based on an analysis of aspects. For instance, to give an overall, global judgement of John’s honesty we must agree on what aspects of John are relevant for that judgement: John qua person (global aspect), John qua social being (social aspect), John qua family man, John qua professional man, etc. We conceptualize this `Aristotelian’ analysis by means of a category of `aspects’. A model (for the negations) is obtained from the category of presheaves on this category. Although neither of the negations is Boolean, predicate negation turns out to be Boolean at the `global’ aspect (the aspect of the overall judgement) which may help to explain the persistent belief that logic is naturally Boolean.

Models for Non-Boolean Negations in Natural Languages based on Aspect Analysis

La Palme Reyes M., Macnamara J., Reyes G. E. and H. Zolfaghari (1999). Count nouns, mass nouns and their transformations: a category-theoretic unified semantics. Language, logic and concepts. Bradford Book, MIT Press, Cambridge, Ma, 1999, pp 427-452.

All natural languages seem to distinguish at the semantic level between count nouns (CNs) such as “dog” and mass nouns (MNs) such as “matter” (in the sense of physical stuff, not in the sense of concern or affair). Some mark the distinction at the syntactic level (e.g. one can say ” a dog”, “a portion of matter”, but not “a matter”). One syntactic difference is that usually CNs take the plural (‘dogs’) whereas MNs do not. We organize the nouns in two categories with adjoint functors between them: the plural, from CNs into MNs, and “portion of” in the opposite direction. We interpret these nominal categories into the category of kinds and the category of sup-lattices, respectively, and build adjoint functors between them which interpret the adjoint functors at the nominal level. This semantics is applied, among others, to study the 8 syllogisms, already considered in the literature, which result from “Claret is wine, wine is liquid, so claret is liquid”, by adding the particle “a” to each noun or keeping it as it is.

Count nouns, mass nouns and their transformations: a category-theoretic unified semantics

La Palme Reyes M., Macnamara J., Reyes G. E. and H. Zolfaghari (1995). A
category-theoretic approach to Aristotle’s term logic with special reference to
syllogisms. In Marion M. and R. S. Cohen (eds.). Québec Studies in the Philosophy
of Science. Part I: Logic, Mathematics, Physics and History of Science. Kluwer
Academic Publishers. 57-68

A category-theoretic approach to Aristotle’s term logic with special reference to syllogisms

Referential structure of fictional texts. In J.Macnamara et G.E.Reyes (Eds). The logical foundations of cognition. Vancouver Studies in Cognitive Science. Oxford University Press, (1994), 309-324.

La Palme Reyes M., Macnamara J. and G. E. Reyes (1994). Reference, Kinds and Predicates. In Macnamara J. and G. E. Reyes (eds.) (1994). The Logical Foundations of Cognition. New York: Oxford University Press. 91-143.

La Palme Reyes M., Macnamara J., Reyes G. E. and H. Zolfaghari (1994). A category-theoretic approach to Aristotle’s term logic with special reference to negation. In V. Gómez Pin (ed.). Actas del Primer Congreso Internacional de Ontología. Barcelona: Publications de la Universitat Autònoma de Barcelona, 241-249.

La Palme Reyes M., Macnamara J., Reyes G. E. and H. Zolfaghari (1994). The non-Boolean logic of natural language negation. Philosophia Matematica (3) Vol. 2. 45-68.