Babbage functional equation

Gonzalo E. Reyes
Université de Montréal

24 December 2014 /Corrected 29 July 2015

The aim of this note is to find all continuous everywhere defined solutions of the Babbage functional equation

$$
\left(^{*}\right) \quad f^{n}=i d
$$

where $n \geq 1, i d(x)=x$ and f^{n} is defined recursively by

$$
\left\{\begin{array}{l}
f^{1}=f \\
f^{n+1}=f \circ f^{n}
\end{array}\right.
$$

From now on, by "solution" of (*) we mean a real, continuous, everywhere defined function f such that $f^{n}=i d$.

A key observation of Babbage was that if f is a solution of $\left({ }^{*}\right)$ and ϕ a (real) continuous bijection of the reals, the conjugate $F=\phi^{-1} \circ f \circ \phi$ is again a solution of (*). Apparently, he believed that the general solution was obtained as the conjugate of a particular solution, on the basis that the conjugate depended on one function.

The theorem below shows that, in some sense, he was right.
Theorem 0.1 If n is odd, the only solution of Babbage equation (*) is the identity. If n is even, the only solutions of Babbage equation (*) are the identity and the conjugates of $-i d$.

To prove the theorem we need several lemmas and propositions:
Lemma 0.2 If f is a solution of $\left(^{*}\right)$, then f is a bijection.

Proof: If $n=1$ there is nothing to prove. Let $n>1$ and $g=f^{n-1}$. Then $f \circ g=g \circ f=i d$. This obviously implies the conclusion. Take, for instance, the injectivity of f : if $f(a)=f(b), a=g(f(a))=g(f(b))=b$.

Lemma 0.3 If f is a solution of $f^{n}=i d$ with $n \geq 1, f$ is either monotonically increasing or monotonically decreasing.

Proof: This is geometrically obvious, since an increasing function, say, can not start to decrease without taking a previous value, something that cannot happen if the function is injective. Analytically, this is a consequence of the intermediate value theorem.

The following simple observations will be very helpful:
Proposition 0.4 (1) There are no monotonically decreasing solutions of the Babbage equation (*) if n is odd. (2) There are no solutions at all for the "dual Babbage functional equation" $f^{m}=-$ id if m is even.

Proof: As for the first, assume that there is such an f and let $x>0$. Then we have the chain of implications

$$
\begin{aligned}
& x>0 \\
& f(x)<f(0) \\
& f^{2}(x)>f^{2}(0) \\
& f^{3}(x)<f^{3}(0) \\
& \ldots \ldots \ldots \ldots \\
& f^{n}(x)<f^{n}(0)
\end{aligned}
$$

But this last inequality says that $x<0$, a contradiction.
As for the second, the same proof works for the non existence of monotonically decreasing solutions of f^{m} for m even. On the other hand, if f is any monotonically increasing function, so is f^{m}, whereas -id is monotonically decreasing. These functions cannot be equal.

Proposition 0.5 Assume that f is a monotonically increasing solution of the Babbage equation $f^{n}=i d$, with $n \geq 1$. Then $f=i d$.

Proof: Assume not. Then there is x_{0} such that $f\left(x_{0}\right) \neq x_{0}$. Then either $x_{0}<f\left(x_{0}\right)$ or $f\left(x_{0}\right)<x_{0}$. In the first case, we have the following chain of
implications

$$
\begin{aligned}
& x_{0}<f\left(x_{0}\right) \\
& f\left(x_{0}\right)<f^{2}\left(x_{0}\right) \\
& \cdots \cdots \cdots \cdots \cdots \\
& f^{n-1}\left(x_{0}\right)<f^{n}\left(x_{0}\right)=x_{0}
\end{aligned}
$$

Thus, $x_{0}<x_{0}$, a contradiction. The other case is similar, proving the proposition.

NB A constructive proof for $n=2$, avoiding the argument by contradiction, has been given by A. Royer [3], completing an argument of Lévy-Leblond [1]. I give this proof, in my own version, in the Appendix.

From all of this, the first part of the theorem follows immediately:
Corollary 0.6 Assume that n is odd. Then the only solution of $f^{n}=i d$ is the identity function.

We now prove the second part of the theorem, by first showing the particular case $n=2$:

Lemma 0.7 The only solutions of the Babbage equation $f^{2}=i d$ are the id and the conjugates of $-i d$

Proof: Let f be a solution. If f is monotonically increasing, then $f=i d$ by proposition 0.5 . Assume that f is monotonically decreasing. The proof proceeds in several steps:
(i) f has a unique fixed point: define

$$
\begin{aligned}
& U=\{x \mid x<f(x)\} \\
& V=\{x \mid x>f(x)\}
\end{aligned}
$$

If there are no fixed points, then $U \cup V=R$. Since U and V are open and disjoint, $U=R$ or $V=R$.

Suppose that $U=R$. Assume $x \in R$. Then $x<f(x)$ and $f(x)<f(f(x))$. Therefore $x<x$, a contradiction. Similarly $V=R$ implies a contradiction. Therefore f has at least one fixed point x_{1}. (Notice that this is independent of the fact that f is monotonically decreasing). If f is monotonically decreasing, then x_{1} is the only fixed point. In fact, let x_{2} be another. We may assume that $x_{1}<x_{2}$. Therefore $f\left(x_{1}\right)>f\left(x_{2}\right)$, i.e., $x_{1}>x_{2}$, a contradiction. Thus $x_{2}=x_{1}$.

The unique fixed point of f divides R into two intervals plus one point: the first $\left(-\infty, x_{1}\right)$, the second $\left(x_{1}, \infty\right)$ and the point x_{1}.

Define $\phi\left(x_{1}\right)=0$ and $\phi:\left(x_{1}, \infty\right) \longrightarrow R$ to be any monotonically increasing non-negative continuous that tends to 0 when x tends to x_{1} from the right and to ∞ when x tends to ∞.

The question is to define $\phi:\left(-\infty, x_{1}\right) \longrightarrow R$.
We recall that we would like to have $f(x)=\phi^{-1}(-\phi(x))$ or, equivalently, $\phi(f(x))=-\phi(x)$. Assume that $x<x_{1}$. Then $f(x)>f\left(x_{1}\right)=x_{1}$. Thus, $\phi(f(x))$ has already been defined and we can simply let

$$
\phi(x)=-\phi(f(x))
$$

We have to show several things:
(ii) ϕ is a continuous bijection.

The fact that is ϕ continuous for all $x \neq x_{1}$ is clear since both restrictions $\phi_{\left(x_{1}, \infty\right)}$ and $\phi_{\left(-\infty, x_{1}\right)}$ are continuous. Furthermore $\phi(x)$ tends to 0 whether we come from the right of x_{1} (by definition of ϕ) or from the left, since in this case $\phi(x)=-\phi(f(x))$ tends to $-\phi\left(f\left(x_{1}\right)\right)=-\phi\left(x_{1}\right)=0$. Thus, ϕ is also continuous at x_{1}.
(ii)a: ϕ is an injection. Assume that $\phi(a)=\phi(b)$. Then both a and b must be in the same interval (ϕ on one interval is non-negative and negative on the other. If both are in the right interval, then $a=b$ by definition of ϕ. Assume, then, that both are in the left and that $\phi(a)=\phi(b)$. Then $\phi(a)=-\phi(f(a))=-\phi(f(b))=\phi(b)$. Thus, $\phi(f(a))=\phi(f(b))$ and hence $f(a)=f(b)$ (since both $f(a)$ and $f(b)$ are in the second interval). Since f is injective, $a=b$.
(ii)b: ϕ is surjective. This is obvious: it is enough to observe that if a sequence $\left\{x_{n}\right\}$ is in the second interval and tends to $\infty, \phi\left(x_{n}\right)$ tends to infinity and $-f\left(\phi\left(x_{n}\right)\right)$ tends to $-\infty$.

Finally, we have to check that $\phi(x)=-\phi(f(x))$. If x is in the first interval, this is true by definition. Assume then that x is in the second interval, i.e., $x>x_{1}$. Then $f(x)<f\left(x_{1}\right)=x_{1}$ and $\phi(f(x))=-\phi(f(f(x))=-\phi(x)$.

NB As an aside, we can ask what is the relation between two conjugates of the same function, say $F_{\phi}=\phi^{-1} \circ f \circ \phi$ and $F_{\psi}=\psi^{-1} \circ f \circ \psi$. The answer is

Proposition 0.8 $F_{\phi}=F_{\psi}$ iff $f \circ \theta=\theta \circ f$, where $\theta=\phi \circ \psi^{-1}$.
Proof: This follows from the chain of equivalences

$$
\begin{aligned}
& \frac{F_{\phi}=F_{\psi}}{\phi^{-1} \circ f \circ \phi=\psi^{-1} \circ f \circ \psi} \\
& \hline f \circ \phi=\phi \circ \psi^{-1} \circ f \circ \psi \\
& \hline f \circ \phi \circ \psi^{-1}=\phi \circ \psi^{-1} \circ f \\
& f \circ \theta=\theta \circ f
\end{aligned}
$$

In the particular case that $f=-i d, F_{\phi}=F_{\psi}$ iff θ is an odd function.
Returning to theorem 0.1 , we can prove the second part from corollary 0.6 and lemma 0.7:

Corollary 0.9 If n is even, the only solutions of Babbage equation $f^{n}=i d$ are id and the conjugates of $-i d$.

Proof: Any even number can be written as $n=2^{k} \times$ odd with $k \geq 1$. The proof proceeds by induction on k.

Let $k=1$. Assume that f is a solution of $f^{2 \times o d d}=i d$. Letting $g=f^{\text {odd }}$, we have $g^{2}=i d$ whose only solutions are $i d$ and the conjugates of -id (Lemma 0.7). Assume $g=i d$. Then $f^{\text {odd }}=i d$ and, by corollary 0.6 , the only solution of this equation is $f=i d$. If $\phi^{-1} \circ g \circ \phi=-i d$, i.e., $\phi^{-1} \circ f^{\circ d d} \circ \phi=-i d$, we can re-write this equation as $\left(-\phi^{-1} \circ f \circ \phi\right)^{\text {odd }}=i d$. Thus, by corollary 0.6 again, $\left(-\phi^{-1} \circ f \circ \phi\right)=i d$. Equivalently, $f=\phi^{-1} \circ(-i d) \circ \phi$. I.e., f is a conjugate of $-i d$.

Assume that the result is true for k and prove it for $k+1$. Suppose that f is a solution of $f^{2^{(k+1)} \times o d d}=i d$ and let $g=f^{2^{k} \times o d d}$. Then $g^{2}=i d$ and the only solutions of g are $i d$ and the conjugates of $-i d$.

In the first case, $f^{2^{k} \times o d d}=i d$ and by induction hypothesis, the only solutions are $i d$ and the conjugates of $-i d$.

In the second, $f^{2^{k} \times o d d}$ is a conjugate of $-i d$, i.e., there is a bijection ϕ such that $f^{2^{k} \times o d d}=\phi^{-1} \circ(-i d) \circ \phi$. Equivalently, $\left(\phi \circ f^{2^{k} \times o d d} \circ \phi^{-1}\right)=-i d$. But $\phi \circ\left(f^{2^{k} \times o d d}\right) \circ \phi^{-1}=\left(\phi \circ f \circ \phi^{-1}\right)^{2^{k} \times o d d}=-i d$ so that $h=\left(\phi \circ f \circ \phi^{-1}\right)$ satisfies $h^{\text {even }}=-i d$ which is impossible by proposition 0.4.

This concludes the proof of theorem 0.1.

As a corollary, we may find all the solutions (again continuous everywhere defined) of the dual Babbage functional equation

$$
\left({ }^{* *}\right) f^{n}=-i d
$$

In fact,
Corollary 0.10 If n is even $\left({ }^{* *}\right)$ has no solutions. If n is odd, the only solution of $\left({ }^{* *}\right)$ is -id

Proof: The first part was proved above (Proposition 0.4). Assume n odd. From $f^{n}=-i d$ we deduce that $f^{2 n}=i d$, and hence, from Theorem 1 either $f=i d$ in which case $f^{n}=i d$, contradicting $\left({ }^{* *}\right)$, or f is a conjugate of $-i d$, i.e., there is an everywhere defined continuous bijection ψ such that $f=\psi^{-1} \circ(-i d) \circ \psi$. Equivalently, for every $x, f(x)=\psi^{-1}(-\psi(x))$. We re-write this equation as

$$
{ }^{*} \psi(f(x)=-\psi(x)
$$

On the other hand, $f=\psi^{-1} \circ(-i d) \circ \psi$ implies that $f^{n}=\psi^{-1} \circ(-i d)^{n} \circ \psi$. Since n is odd, $f^{n}=\psi^{-1} \circ(-i d) \circ \psi$, i.e., $-x=\psi^{-1}(-\psi(x))$. This can be rewritten as

$$
{ }^{* *} \psi(-x)=-\psi(x)
$$

Combining * and ${ }^{* *}, \psi(f(x))=\psi(-x)$. Since ψ is a bijection, $f(x)=-x$.
NB Notice that ${ }^{* *}$ is an immediate consequence of proposition 0.8. Indeed, $F_{i d}$ and $F_{\psi}=f$ are conjugates of $-i d$. Therefore, $\theta=\psi \circ i d^{-1}=\psi$ is an odd function.

0.1 Appendix

Theorem 0.11 The only monotonically increasing everywhere defined continuous function solution of Babbage equation $f^{2}=i d$ is the identity function.

Proof: Define the binary relation

$$
R(t, s) \equiv f(1 / 2(t-s))=1 / 2(t+s)
$$

Notice that by the property of f we could also write

$$
R(t, s) \equiv f(1 / 2(t+s))=1 / 2(t-s)
$$

We claim that if f is monotonically increasing, then R is functional, i.e., $R\left(t, s_{1}\right) \wedge R\left(t, s_{2}\right) \longrightarrow s_{1}=s_{2}$.

Indeed, let s_{1} and s_{2} such that $R\left(t, s_{1}\right) \wedge R\left(t, s_{2}\right)$. Then either $s_{1}<s_{2}$ or $s_{1}=s_{2}$ or $s_{1}>s_{2}$. Assume the first alternative, the last one is similar. Then $x_{1}=1 / 2\left(t-s_{1}\right)>1 / 2\left(t-s_{2}\right)=x_{2}$. On the other hand $f\left(x_{1}\right)=1 / 2\left(t+s_{1}\right)<$ $1 / 2\left(t+s_{2}\right)=f\left(x_{2}\right)$ contradicting the fact that f is monotonically increasing.

Notice that

$$
\left(^{*}\right) \quad y=f(x) \quad \text { iff } \quad R(y+x, y-x)
$$

Since $y=f(x)$ iff $x=f(y)$ (from Lemma 0.2 and the fact that f is its own inverse in this case),

$$
\left({ }^{* *}\right) \quad x=f(y) \quad \text { iff } \quad R(y+x, y-x)
$$

From (*), it follows that

$$
\left({ }^{* * *}\right) \quad R(f(x)+x, f(x)-x)
$$

and from (**),

$$
R(y+f(y), y-f(y))
$$

Replacing the dummy variable y by x,

$$
\left(^{* * * *}\right) \quad R(x+f(x), x-f(x))
$$

From $\left({ }^{* * *}\right)$ and $\left({ }^{* * * *}\right)$ and the functionality of $R, x=f(x)$ for all x.

References

[1] Lévy-Leblond, One more derivation of the Lorentz transformation, American Journal of Physics, vol 44, No 3, March 1976, 271-277
[2] J.F.Ritt, On certain real solutions of Babbage's functional equation, Annals of Mathematics, Second Series, vol 17, No 3, 1916, 113-122
[3] A.Royer, II Lorentz transformations from neither of Einstein's two postulates. Unpublished manuscript.

