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The aim of this note is to find all continuous everywhere defined solutions
of the Babbage functional equation

() fr=id

where n > 1, id(z) = x and f™ is defined recursively by

{flzf
frr=fogr

From now on, by “solution” of (*) we mean a real, continuous, everywhere
defined function f such that f™ = id.

A key observation of Babbage was that if f is a solution of (*) and ¢
a (real) continuous bijection of the reals, the conjugate ' = ¢! o fo ¢ is
again a solution of (*). Apparently, he believed that the general solution
was obtained as the conjugate of a particular solution, on the basis that the
conjugate depended on one function.

The theorem below shows that, in some sense, he was right.

Theorem 0.1 If n is odd, the only solution of Babbage equation (*) is the
identity. If n is even, the only solutions of Babbage equation (*) are the
identity and the conjugates of —id.

To prove the theorem we need several lemmas and propositions:

Lemma 0.2 If f is a solution of (*), then f is a bijection.



Proof: If n = 1 there is nothing to prove. Let n > 1 and ¢ = f"!. Then
fog=go f =1id. This obviously implies the conclusion. Take, for instance,

the injectivity of f: if f(a) = f(b), a = g(f(a)) = g(f(b)) = 0.

Lemma 0.3 If f is a solution of f* =1id withn > 1, f is either monotoni-
cally increasing or monotonically decreasing.

Proof: This is geometrically obvious, since an increasing function, say, can
not start to decrease without taking a previous value, something that cannot
happen if the function is injective. Analytically, this is a consequence of the
intermediate value theorem.

The following simple observations will be very helpful:

Proposition 0.4 (1) There are no monotonically decreasing solutions of the
Babbage equation (*) if n is odd. (2) There are no solutions at all for the
“dual Babbage functional equation” f™ = —id if m is even.

Proof: As for the first, assume that there is such an f and let x > 0. Then
we have the chain of implications

x>0

f(z) < f(0)
f2(z) > f%(0)
f(x) < £3(0)

But this last inequality says that x < 0, a contradiction.

As for the second, the same proof works for the non existence of monoton-
ically decreasing solutions of f™ for m even. On the other hand, if f is any
monotonically increasing function, so is f™, whereas —id is monotonically
decreasing. These functions cannot be equal.

Proposition 0.5 Assume that f is a monotonically increasing solution of
the Babbage equation f" =1id, with n > 1. Then [ = id.

Proof: Assume not. Then there is g such that f(zy) # . Then either
xo < f(xo) or f(xg) < xp. In the first case, we have the following chain of



implications
zo < f(wo)
(o) < f*(x0)

[ (wo) < f™(20) = o
Thus, zg < xg, a contradiction. The other case is similar, proving the propo-
sition.
NB A constructive proof for n = 2, avoiding the argument by contradic-

tion, has been given by A. Royer [3], completing an argument of Lévy-Leblond
[1]. T give this proof, in my own version, in the Appendix.

From all of this, the first part of the theorem follows immediately:

Corollary 0.6 Assume that n is odd. Then the only solution of f™ = id is
the identity function.

We now prove the second part of the theorem, by first showing the par-
ticular case n = 2 :

Lemma 0.7 The only solutions of the Babbage equation f? = id are the id
and the conjugates of —id

Proof: Let f be a solution. If f is monotonically increasing, then f = id
by proposition 0.5. Assume that f is monotonically decreasing. The proof
proceeds in several steps:

(i) f has a unique fixed point: define

U= {zle < f(x)}
V= A{zfz > f(z)}

If there are no fixed points, then U UV = R. Since U and V' are open and
disjoint, U = Ror V = R.

Suppose that U = R. Assume z € R. Then x < f(z) and f(z) < f(f(x)).
Therefore x < z, a contradiction. Similarly V = R implies a contradiction.
Therefore f has at least one fixed point ;. (Notice that this is independent of
the fact that f is monotonically decreasing). If f is monotonically decreasing,
then x; is the only fixed point. In fact, let x5 be another. We may assume
that z7 < zy. Therefore f(x1) > f(x2), i.e., z1 > z3, a contradiction. Thus
To = T1.



The unique fixed point of f divides R into two intervals plus one point:
the first (—oo, x1), the second (z1,00) and the point x;.

Define ¢(x1) = 0 and ¢ : (z1,00)—> R to be any monotonically increasing
non-negative continuous that tends to 0 when x tends to x; from the right
and to oo when x tends to oo.

The question is to define ¢ : (—o0, z1)—R.

We recall that we would like to have f(x) = ¢~ (—¢(x)) or, equivalently,
o(f(x)) = —é(x). Assume that © < x;. Then f(z) > f(x1) = 1. Thus,
¢(f(x)) has already been defined and we can simply let

We have to show several things:
(ii) ¢ is a continuous bijection.

The fact that is ¢ continuous for all = # z; is clear since both restrictions
B(e1,00) A P(_ooz,) are continuous. Furthermore ¢(x) tends to 0 whether
we come from the right of x; (by definition of ¢) or from the left, since in
this case ¢(x) = —¢(f(x)) tends to —¢(f(x1)) = —¢p(x1) = 0. Thus, ¢ is also

continuous at xj.

(ii)a: ¢ is an injection. Assume that ¢(a) = ¢(b). Then both a and b
must be in the same interval (¢ on one interval is non-negative and negative
on the other. If both are in the right interval, then a = b by definition
of ¢. Assume, then, that both are in the left and that ¢(a) = ¢(b). Then
¢la) = —o(f(a)) = —¢(f(b)) = ¢(b). Thus, ¢(f(a)) = &(f(b)) and hence
f(a) = f(b) (since both f(a) and f(b) are in the second interval). Since f is

injective, a = b.

(ii)b: ¢ is surjective. This is obvious: it is enough to observe that if
a sequence {x,} is in the second interval and tends to oo, ¢(x,) tends to
infinity and — f(¢(x,)) tends to —oo.

Finally, we have to check that ¢(x) = —¢(f(x)). If x is in the first interval,
this is true by definition. Assume then that z is in the second interval, i.e.,

x> x1. Then f(x) < f(21) = 21 and ¢(f(z)) = —o(f(f(2)) = —¢().

NB As an aside, we can ask what is the relation between two conjugates
of the same function, say Fy = ¢~'o fo¢ and Fy =1~ o f oth. The answer
is



Proposition 0.8 F, = Fy iff fof =00 f, where 0 = ¢op~'.
Proof: This follows from the chain of equivalences

Fy = Fy
ptofop=1"tofor
fop=¢otp~ o foy)
fopopyl=¢poyplof
fob=00of

In the particular case that f = —id, Fy = F), iff 0 is an odd function.

Returning to theorem 0.1, we can prove the second part from corollary
0.6 and lemma 0.7:

Corollary 0.9 Ifn is even, the only solutions of Babbage equation f" = id
are 1d and the conjugates of —id.

Proof: Any even number can be written as n = 2¥ x odd with k > 1. The
proof proceeds by induction on k.

Let k = 1. Assume that f is a solution of f2%°% = id. Letting g = f°%, we
have g? = id whose only solutions are id and the conjugates of —id (Lemma
0.7). Assume g = id. Then f°% = id and, by corollary 0.6, the only solution
of this equation is f = id. If ' ogo ¢ = —id, i.e., o~ o f%% 0 p = —id,
we can re-write this equation as (—¢~! o f 0 ¢)°% = id. Thus, by corollary
0.6 again, (—¢~'o f o ¢) =id. Equivalently, f = ¢~ o (—id)o ¢. Le., fis a
conjugate of —id.

Assume that the result is true for k& and prove it for k£ + 1. Suppose that

f is a solution of f2"""xedd — g and let g = f2"*°%_ Then ¢ = id and the
only solutions of g are id and the conjugates of —id.

In the first case, kaXOdd = id and by induction hypothesis, the only
solutions are id and the conjugates of —id.

In the second, fszOdd is a conjugate of —id, i.e., there is a bijection ¢
such that f2"x°d — ¢=1 o (—id) o ¢. Equivalently, (¢ o f2¥°% o ¢=1) = —id.
But ¢ o (f2*9dd) o =1 = (¢ o fo ¢ 1)2 >l = _jd so that h = (¢po fog¢!)
satisfies h®’*" = —id which is impossible by proposition 0.4.

This concludes the proof of theorem 0.1.



As a corollary, we may find all the solutions (again continuous everywhere
defined) of the dual Babbage functional equation

In fact,

Corollary 0.10 If n is even (**) has no solutions. If n is odd, the only
solution of (**) is —id

Proof: The first part was proved above (Proposition 0.4). Assume n odd.
From f" = —id we deduce that f?" = id, and hence, from Theorem 1 either
f = id in which case f" = id, contradicting (**), or f is a conjugate of
—id, i.e., there is an everywhere defined continuous bijection 1) such that
f = ¢! o (—id) o 9. Equivalently, for every =, f(x) = v~ 1(—=¢(x)). We

re-write this equation as

" Y(f(e) = —(x)

¥~ o (—id) o ¢ implies that f* =1~! o (—id)" 0.
1

On the other hand, f =
= ¢! o (—id) o, ie., —x = Y1 (—1(x)). This can be

Since n is odd, f"
rewritten as

(=) = —y(x)
Combining * and **, ¥(f(z)) = (—x). Since 1 is a bijection, f(x) = —=.

NB Notice that ** is an immediate consequence of proposition 0.8. Indeed,
Fiq and Fy = f are conjugates of —id. Therefore, § = 1 oid™! =9 is an odd
function.

0.1 Appendix

Theorem 0.11 The only monotonically increasing everywhere defined con-
tinuous function solution of Babbage equation f? = id is the identity function.

Proof: Define the binary relation
R(t,s) = f(1/2(t —s)) = 1/2(t + s)
Notice that by the property of f we could also write
R(t,s) = f(1/2(t+s)) =1/2(t — s)

6



We claim that if f is monotonically increasing, then R is functional, i.e.,
R(t, Sl) A R(t, 82)—>Sl = S9.

Indeed, let s; and sy such that R(t,s1) A R(t, s2). Then either s; < sy or
$1 = S9 Or S1 > S9. Assume the first alternative, the last one is similar. Then
x1 =1/2(t—s1) > 1/2(t — s9) = x3. On the other hand f(x1) = 1/2(t+s1) <
1/2(t+s2) = f(x9) contradicting the fact that f is monotonically increasing.

Notice that
(") y=flz) f Ry+zy—2x)

Since y = f(x) iff z = f(y) (from Lemma 0.2 and the fact that f is its own
inverse in this case),

(") == fly) iff R(y+az,y-2)
From (*), it follows that
(™) R(f(x) + 2, f(x) — )

and from (**),

R(y+ f(y),y — f(y))
Replacing the dummy variable y by =z,

(") Rz + flz),x = f(x))

From (**) and (****) and the functionality of R, x = f(z) for all x.
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