Babbage functional equation

Gonzalo E. Reyes Université de Montréal

24 December 2014 /Corrected 29 July 2015

The aim of this note is to find all continuous everywhere defined solutions of the Babbage functional equation

$$(^*) \quad f^n = id$$

where $n \ge 1$, id(x) = x and f^n is defined recursively by

$$\begin{cases} f^1 = f\\ f^{n+1} = f \circ f^n \end{cases}$$

From now on, by "solution" of (*) we mean a real, continuous, everywhere defined function f such that $f^n = id$.

A key observation of Babbage was that if f is a solution of (*) and ϕ a (real) continuous bijection of the reals, the conjugate $F = \phi^{-1} \circ f \circ \phi$ is again a solution of (*). Apparently, he believed that the general solution was obtained as the conjugate of a particular solution, on the basis that the conjugate depended on one function.

The theorem below shows that, in some sense, he was right.

Theorem 0.1 If n is odd, the only solution of Babbage equation (*) is the identity. If n is even, the only solutions of Babbage equation (*) are the identity and the conjugates of -id.

To prove the theorem we need several lemmas and propositions:

Lemma 0.2 If f is a solution of (*), then f is a bijection.

Proof: If n = 1 there is nothing to prove. Let n > 1 and $g = f^{n-1}$. Then $f \circ g = g \circ f = id$. This obviously implies the conclusion. Take, for instance, the injectivity of f: if f(a) = f(b), a = g(f(a)) = g(f(b)) = b.

Lemma 0.3 If f is a solution of $f^n = id$ with $n \ge 1$, f is either monotonically increasing or monotonically decreasing.

Proof: This is geometrically obvious, since an increasing function, say, can not start to decrease without taking a previous value, something that cannot happen if the function is injective. Analytically, this is a consequence of the intermediate value theorem.

The following simple observations will be very helpful:

Proposition 0.4 (1) There are no monotonically decreasing solutions of the Babbage equation (*) if n is odd. (2) There are no solutions at all for the "dual Babbage functional equation" $f^m = -id$ if m is even.

Proof: As for the first, assume that there is such an f and let x > 0. Then we have the chain of implications

But this last inequality says that x < 0, a contradiction.

As for the second, the same proof works for the non existence of monotonically decreasing solutions of f^m for m even. On the other hand, if f is any monotonically increasing function, so is f^m , whereas -id is monotonically decreasing. These functions cannot be equal.

Proposition 0.5 Assume that f is a monotonically increasing solution of the Babbage equation $f^n = id$, with $n \ge 1$. Then f = id.

Proof: Assume not. Then there is x_0 such that $f(x_0) \neq x_0$. Then either $x_0 < f(x_0)$ or $f(x_0) < x_0$. In the first case, we have the following chain of

implications

$$x_{0} < f(x_{0}) f(x_{0}) < f^{2}(x_{0}) \dots f^{n-1}(x_{0}) < f^{n}(x_{0}) = x_{0}$$

Thus, $x_0 < x_0$, a contradiction. The other case is similar, proving the proposition.

NB A constructive proof for n = 2, avoiding the argument by contradiction, has been given by A. Royer [3], completing an argument of Lévy-Leblond [1]. I give this proof, in my own version, in the Appendix.

From all of this, the first part of the theorem follows immediately:

Corollary 0.6 Assume that n is odd. Then the only solution of $f^n = id$ is the identity function.

We now prove the second part of the theorem, by first showing the particular case n = 2:

Lemma 0.7 The only solutions of the Babbage equation $f^2 = id$ are the *id* and the conjugates of -id

Proof: Let f be a solution. If f is monotonically increasing, then f = id by proposition 0.5. Assume that f is monotonically decreasing. The proof proceeds in several steps:

(i) f has a unique fixed point: define

$$U = \{x | x < f(x)\} \\ V = \{x | x > f(x)\}$$

If there are no fixed points, then $U \cup V = R$. Since U and V are open and disjoint, U = R or V = R.

Suppose that U = R. Assume $x \in R$. Then x < f(x) and f(x) < f(f(x)). Therefore x < x, a contradiction. Similarly V = R implies a contradiction. Therefore f has at least one fixed point x_1 . (Notice that this is independent of the fact that f is monotonically decreasing). If f is monotonically decreasing, then x_1 is the only fixed point. In fact, let x_2 be another. We may assume that $x_1 < x_2$. Therefore $f(x_1) > f(x_2)$, i.e., $x_1 > x_2$, a contradiction. Thus $x_2 = x_1$. The unique fixed point of f divides R into two intervals plus one point: the first $(-\infty, x_1)$, the second (x_1, ∞) and the point x_1 .

Define $\phi(x_1) = 0$ and $\phi: (x_1, \infty) \longrightarrow R$ to be any monotonically increasing non-negative continuous that tends to 0 when x tends to x_1 from the right and to ∞ when x tends to ∞ .

The question is to define $\phi: (-\infty, x_1) \longrightarrow R$.

We recall that we would like to have $f(x) = \phi^{-1}(-\phi(x))$ or, equivalently, $\phi(f(x)) = -\phi(x)$. Assume that $x < x_1$. Then $f(x) > f(x_1) = x_1$. Thus, $\phi(f(x))$ has already been defined and we can simply let

$$\phi(x) = -\phi(f(x))$$

We have to show several things:

(ii) ϕ is a continuous bijection.

The fact that is ϕ continuous for all $x \neq x_1$ is clear since both restrictions $\phi_{(x_1,\infty)}$ and $\phi_{(-\infty,x_1)}$ are continuous. Furthermore $\phi(x)$ tends to 0 whether we come from the right of x_1 (by definition of ϕ) or from the left, since in this case $\phi(x) = -\phi(f(x))$ tends to $-\phi(f(x_1)) = -\phi(x_1) = 0$. Thus, ϕ is also continuous at x_1 .

(ii)a: ϕ is an injection. Assume that $\phi(a) = \phi(b)$. Then both a and b must be in the same interval (ϕ on one interval is non-negative and negative on the other. If both are in the right interval, then a = b by definition of ϕ . Assume, then, that both are in the left and that $\phi(a) = \phi(b)$. Then $\phi(a) = -\phi(f(a)) = -\phi(f(b)) = \phi(b)$. Thus, $\phi(f(a)) = \phi(f(b))$ and hence f(a) = f(b) (since both f(a) and f(b) are in the second interval). Since f is injective, a = b.

(ii)b: ϕ is surjective. This is obvious: it is enough to observe that if a sequence $\{x_n\}$ is in the second interval and tends to ∞ , $\phi(x_n)$ tends to infinity and $-f(\phi(x_n))$ tends to $-\infty$.

Finally, we have to check that $\phi(x) = -\phi(f(x))$. If x is in the first interval, this is true by definition. Assume then that x is in the second interval, i.e., $x > x_1$. Then $f(x) < f(x_1) = x_1$ and $\phi(f(x)) = -\phi(f(f(x))) = -\phi(x)$.

NB As an aside, we can ask what is the relation between two conjugates of the same function, say $F_{\phi} = \phi^{-1} \circ f \circ \phi$ and $F_{\psi} = \psi^{-1} \circ f \circ \psi$. The answer is

Proposition 0.8 $F_{\phi} = F_{\psi}$ iff $f \circ \theta = \theta \circ f$, where $\theta = \phi \circ \psi^{-1}$.

Proof: This follows from the chain of equivalences

$F_{\phi} = F_{\psi}$
$\overline{\phi^{-1} \circ f \circ \phi} = \psi^{-1} \circ f \circ \psi$
$f\circ\phi=\phi\circ\psi^{-1}\circ f\circ\psi$
$f \circ \phi \circ \psi^{-1} = \phi \circ \psi^{-1} \circ f$
$f \circ \theta = \theta \circ f$

In the particular case that f = -id, $F_{\phi} = F_{\psi}$ iff θ is an odd function.

Returning to theorem 0.1, we can prove the second part from corollary 0.6 and lemma 0.7:

Corollary 0.9 If n is even, the only solutions of Babbage equation $f^n = id$ are id and the conjugates of -id.

Proof: Any even number can be written as $n = 2^k \times odd$ with $k \ge 1$. The proof proceeds by induction on k.

Let k = 1. Assume that f is a solution of $f^{2 \times odd} = id$. Letting $g = f^{odd}$, we have $g^2 = id$ whose only solutions are id and the conjugates of -id (Lemma 0.7). Assume g = id. Then $f^{odd} = id$ and, by corollary 0.6, the only solution of this equation is f = id. If $\phi^{-1} \circ g \circ \phi = -id$, i.e., $\phi^{-1} \circ f^{odd} \circ \phi = -id$, we can re-write this equation as $(-\phi^{-1} \circ f \circ \phi)^{odd} = id$. Thus, by corollary 0.6 again, $(-\phi^{-1} \circ f \circ \phi) = id$. Equivalently, $f = \phi^{-1} \circ (-id) \circ \phi$. I.e., f is a conjugate of -id.

Assume that the result is true for k and prove it for k + 1. Suppose that f is a solution of $f^{2^{(k+1)} \times odd} = id$ and let $g = f^{2^k \times odd}$. Then $g^2 = id$ and the only solutions of g are id and the conjugates of -id.

In the first case, $f^{2^k \times odd} = id$ and by induction hypothesis, the only solutions are *id* and the conjugates of -id.

In the second, $f^{2^k \times odd}$ is a conjugate of -id, i.e., there is a bijection ϕ such that $f^{2^k \times odd} = \phi^{-1} \circ (-id) \circ \phi$. Equivalently, $(\phi \circ f^{2^k \times odd} \circ \phi^{-1}) = -id$. But $\phi \circ (f^{2^k \times odd}) \circ \phi^{-1} = (\phi \circ f \circ \phi^{-1})^{2^k \times odd} = -id$ so that $h = (\phi \circ f \circ \phi^{-1})$ satisfies $h^{even} = -id$ which is impossible by proposition 0.4.

This concludes the proof of theorem 0.1.

As a corollary, we may find all the solutions (again continuous everywhere defined) of the dual Babbage functional equation

(**)
$$f^n = -id$$

In fact,

Corollary 0.10 If n is even $(^{**})$ has no solutions. If n is odd, the only solution of $(^{**})$ is -id

Proof: The first part was proved above (Proposition 0.4). Assume n odd. From $f^n = -id$ we deduce that $f^{2n} = id$, and hence, from Theorem 1 either f = id in which case $f^n = id$, contradicting (**), or f is a conjugate of -id, i.e., there is an everywhere defined continuous bijection ψ such that $f = \psi^{-1} \circ (-id) \circ \psi$. Equivalently, for every x, $f(x) = \psi^{-1}(-\psi(x))$. We re-write this equation as

*
$$\psi(f(x) = -\psi(x))$$

On the other hand, $f = \psi^{-1} \circ (-id) \circ \psi$ implies that $f^n = \psi^{-1} \circ (-id)^n \circ \psi$. Since *n* is odd, $f^n = \psi^{-1} \circ (-id) \circ \psi$, i.e., $-x = \psi^{-1}(-\psi(x))$. This can be rewritten as

$$\psi(-x) = -\psi(x)$$

Combining * and **, $\psi(f(x)) = \psi(-x)$. Since ψ is a bijection, f(x) = -x.

NB Notice that ^{**} is an immediate consequence of proposition 0.8. Indeed, F_{id} and $F_{\psi} = f$ are conjugates of -id. Therefore, $\theta = \psi \circ id^{-1} = \psi$ is an odd function.

0.1 Appendix

Theorem 0.11 The only monotonically increasing everywhere defined continuous function solution of Babbage equation $f^2 = id$ is the identity function.

Proof: Define the binary relation

$$R(t,s) \equiv f(1/2(t-s)) = 1/2(t+s)$$

Notice that by the property of f we could also write

$$R(t,s) \equiv f(1/2(t+s)) = 1/2(t-s)$$

We claim that if f is monotonically increasing, then R is functional, i.e., $R(t, s_1) \wedge R(t, s_2) \longrightarrow s_1 = s_2$.

Indeed, let s_1 and s_2 such that $R(t, s_1) \wedge R(t, s_2)$. Then either $s_1 < s_2$ or $s_1 = s_2$ or $s_1 > s_2$. Assume the first alternative, the last one is similar. Then $x_1 = 1/2(t-s_1) > 1/2(t-s_2) = x_2$. On the other hand $f(x_1) = 1/2(t+s_1) < 1/2(t+s_2) = f(x_2)$ contradicting the fact that f is monotonically increasing.

Notice that

(*)
$$y = f(x)$$
 iff $R(y + x, y - x)$

Since y = f(x) iff x = f(y) (from Lemma 0.2 and the fact that f is its own inverse in this case),

(**)
$$x = f(y)$$
 iff $R(y + x, y - x)$

From (*), it follows that

(***)
$$R(f(x) + x, f(x) - x)$$

and from $(^{**})$,

$$R(y + f(y), y - f(y))$$

Replacing the dummy variable y by x,

$$(****)$$
 $R(x + f(x), x - f(x))$

From (***) and (****) and the functionality of R, x = f(x) for all x.

References

- [1] Lévy-Leblond, One more derivation of the Lorentz transformation, American Journal of Physics, vol 44, No 3, March 1976, 271-277
- [2] J.F.Ritt, On certain real solutions of Babbage's functional equation, Annals of Mathematics, Second Series, vol 17, No 3, 1916, 113-122
- [3] A.Royer, II Lorentz transformations from neither of Einstein's two postulates. Unpublished manuscript.