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The aim of this note is to find all continuous everywhere defined solutions
of the Babbage functional equation

(∗) fn = id

where n ≥ 1, id(x) = x and fn is defined recursively by{
f 1 = f
fn+1 = f ◦ fn

From now on, by “solution” of (∗) we mean a real, continuous, everywhere
defined function f such that fn = id.

A key observation of Babbage was that if f is a solution of (∗) and φ
a (real) continuous bijection of the reals, the conjugate F = φ−1 ◦ f ◦ φ is
again a solution of (∗). Apparently, he believed that the general solution
was obtained as the conjugate of a particular solution, on the basis that the
conjugate depended on one function.

The theorem below shows that, in some sense, he was right.

Theorem 0.1 If n is odd, the only solution of Babbage equation (∗) is the
identity. If n is even, the only solutions of Babbage equation (∗) are the
identity and the conjugates of −id.

To prove the theorem we need several lemmas and propositions:

Lemma 0.2 If f is a solution of (∗), then f is a bijection.
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Proof: If n = 1 there is nothing to prove. Let n > 1 and g = fn−1. Then
f ◦ g = g ◦ f = id. This obviously implies the conclusion. Take, for instance,
the injectivity of f : if f(a) = f(b), a = g(f(a)) = g(f(b)) = b.

Lemma 0.3 If f is a solution of fn = id with n ≥ 1, f is either monotoni-
cally increasing or monotonically decreasing.

Proof: This is geometrically obvious, since an increasing function, say, can
not start to decrease without taking a previous value, something that cannot
happen if the function is injective. Analytically, this is a consequence of the
intermediate value theorem.

The following simple observations will be very helpful:

Proposition 0.4 (1) There are no monotonically decreasing solutions of the
Babbage equation (∗) if n is odd. (2) There are no solutions at all for the
“dual Babbage functional equation” fm = −id if m is even.

Proof: As for the first, assume that there is such an f and let x > 0. Then
we have the chain of implications

x > 0
f(x) < f(0)
f 2(x) > f 2(0)
f 3(x) < f 3(0)
. . . . . . . . . . . .
fn(x) < fn(0)

But this last inequality says that x < 0, a contradiction.

As for the second, the same proof works for the non existence of monoton-
ically decreasing solutions of fm for m even. On the other hand, if f is any
monotonically increasing function, so is fm, whereas −id is monotonically
decreasing. These functions cannot be equal.

Proposition 0.5 Assume that f is a monotonically increasing solution of
the Babbage equation fn = id, with n ≥ 1. Then f = id.

Proof: Assume not. Then there is x0 such that f(x0) 6= x0. Then either
x0 < f(x0) or f(x0) < x0. In the first case, we have the following chain of
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implications
x0 < f(x0)
f(x0) < f 2(x0)
. . . . . . . . . . . . . . .
fn−1(x0) < fn(x0) = x0

Thus, x0 < x0, a contradiction. The other case is similar, proving the propo-
sition.

NB A constructive proof for n = 2, avoiding the argument by contradic-
tion, has been given by A. Royer [3], completing an argument of Lévy-Leblond
[1]. I give this proof, in my own version, in the Appendix.

From all of this, the first part of the theorem follows immediately:

Corollary 0.6 Assume that n is odd. Then the only solution of fn = id is
the identity function.

We now prove the second part of the theorem, by first showing the par-
ticular case n = 2 :

Lemma 0.7 The only solutions of the Babbage equation f 2 = id are the id
and the conjugates of −id

Proof: Let f be a solution. If f is monotonically increasing, then f = id
by proposition 0.5. Assume that f is monotonically decreasing. The proof
proceeds in several steps:

(i) f has a unique fixed point: define

U = {x|x < f(x)}
V = {x|x > f(x)}

If there are no fixed points, then U ∪ V = R. Since U and V are open and
disjoint, U = R or V = R.

Suppose that U = R. Assume x ∈ R. Then x < f(x) and f(x) < f(f(x)).
Therefore x < x, a contradiction. Similarly V = R implies a contradiction.
Therefore f has at least one fixed point x1. (Notice that this is independent of
the fact that f is monotonically decreasing). If f is monotonically decreasing,
then x1 is the only fixed point. In fact, let x2 be another. We may assume
that x1 < x2. Therefore f(x1) > f(x2), i.e., x1 > x2, a contradiction. Thus
x2 = x1.
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The unique fixed point of f divides R into two intervals plus one point:
the first (−∞, x1), the second (x1,∞) and the point x1.

Define φ(x1) = 0 and φ : (x1,∞)−→R to be any monotonically increasing
non-negative continuous that tends to 0 when x tends to x1 from the right
and to ∞ when x tends to ∞.

The question is to define φ : (−∞, x1)−→R.
We recall that we would like to have f(x) = φ−1(−φ(x)) or, equivalently,

φ(f(x)) = −φ(x). Assume that x < x1. Then f(x) > f(x1) = x1. Thus,
φ(f(x)) has already been defined and we can simply let

φ(x) = −φ(f(x))

We have to show several things:

(ii) φ is a continuous bijection.

The fact that is φ continuous for all x 6= x1 is clear since both restrictions
φ(x1,∞) and φ(−∞,x1) are continuous. Furthermore φ(x) tends to 0 whether
we come from the right of x1 (by definition of φ) or from the left, since in
this case φ(x) = −φ(f(x)) tends to −φ(f(x1)) = −φ(x1) = 0. Thus, φ is also
continuous at x1.

(ii)a: φ is an injection. Assume that φ(a) = φ(b). Then both a and b
must be in the same interval (φ on one interval is non-negative and negative
on the other. If both are in the right interval, then a = b by definition
of φ. Assume, then, that both are in the left and that φ(a) = φ(b). Then
φ(a) = −φ(f(a)) = −φ(f(b)) = φ(b). Thus, φ(f(a)) = φ(f(b)) and hence
f(a) = f(b) (since both f(a) and f(b) are in the second interval). Since f is
injective, a = b.

(ii)b: φ is surjective. This is obvious: it is enough to observe that if
a sequence {xn} is in the second interval and tends to ∞, φ(xn) tends to
infinity and −f(φ(xn)) tends to −∞.

Finally, we have to check that φ(x) = −φ(f(x)). If x is in the first interval,
this is true by definition. Assume then that x is in the second interval, i.e.,
x > x1. Then f(x) < f(x1) = x1 and φ(f(x)) = −φ(f(f(x)) = −φ(x).

NB As an aside, we can ask what is the relation between two conjugates
of the same function, say Fφ = φ−1 ◦ f ◦ φ and Fψ = ψ−1 ◦ f ◦ψ. The answer
is
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Proposition 0.8 Fφ = Fψ iff f ◦ θ = θ ◦ f, where θ = φ ◦ ψ−1.

Proof: This follows from the chain of equivalences

Fφ = Fψ
φ−1 ◦ f ◦ φ = ψ−1 ◦ f ◦ ψ
f ◦ φ = φ ◦ ψ−1 ◦ f ◦ ψ
f ◦ φ ◦ ψ−1 = φ ◦ ψ−1 ◦ f
f ◦ θ = θ ◦ f

In the particular case that f = −id, Fφ = Fψ iff θ is an odd function.

Returning to theorem 0.1, we can prove the second part from corollary
0.6 and lemma 0.7:

Corollary 0.9 If n is even, the only solutions of Babbage equation fn = id
are id and the conjugates of −id.

Proof: Any even number can be written as n = 2k × odd with k ≥ 1. The
proof proceeds by induction on k.

Let k = 1. Assume that f is a solution of f 2×odd = id. Letting g = f odd, we
have g2 = id whose only solutions are id and the conjugates of −id (Lemma
0.7). Assume g = id. Then f odd = id and, by corollary 0.6, the only solution
of this equation is f = id. If φ−1 ◦ g ◦ φ = −id, i.e., φ−1 ◦ f odd ◦ φ = −id,
we can re-write this equation as (−φ−1 ◦ f ◦ φ)odd = id. Thus, by corollary
0.6 again, (−φ−1 ◦ f ◦ φ) = id. Equivalently, f = φ−1 ◦ (−id) ◦ φ. I.e., f is a
conjugate of −id.

Assume that the result is true for k and prove it for k + 1. Suppose that
f is a solution of f 2(k+1)×odd = id and let g = f 2k×odd. Then g2 = id and the
only solutions of g are id and the conjugates of −id.

In the first case, f 2k×odd = id and by induction hypothesis, the only
solutions are id and the conjugates of −id.

In the second, f 2k×odd is a conjugate of −id, i.e., there is a bijection φ
such that f 2k×odd = φ−1 ◦ (−id) ◦ φ. Equivalently, (φ ◦ f 2k×odd ◦ φ−1) = −id.
But φ ◦ (f 2k×odd) ◦ φ−1 = (φ ◦ f ◦ φ−1)2k×odd = −id so that h = (φ ◦ f ◦ φ−1)
satisfies heven = −id which is impossible by proposition 0.4.

This concludes the proof of theorem 0.1.
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As a corollary, we may find all the solutions (again continuous everywhere
defined) of the dual Babbage functional equation

(∗∗) fn = −id

In fact,

Corollary 0.10 If n is even (∗∗) has no solutions. If n is odd, the only
solution of (∗∗) is −id

Proof: The first part was proved above (Proposition 0.4). Assume n odd.
From fn = −id we deduce that f 2n = id, and hence, from Theorem 1 either
f = id in which case fn = id, contradicting (∗∗), or f is a conjugate of
−id, i.e., there is an everywhere defined continuous bijection ψ such that
f = ψ−1 ◦ (−id) ◦ ψ. Equivalently, for every x, f(x) = ψ−1(−ψ(x)). We
re-write this equation as

∗ ψ(f(x) = −ψ(x)

On the other hand, f = ψ−1 ◦ (−id) ◦ ψ implies that fn = ψ−1 ◦ (−id)n ◦ ψ.
Since n is odd, fn = ψ−1 ◦ (−id) ◦ ψ, i.e., −x = ψ−1(−ψ(x)). This can be
rewritten as

∗∗ ψ(−x) = −ψ(x)

Combining ∗ and ∗∗, ψ(f(x)) = ψ(−x). Since ψ is a bijection, f(x) = −x.
NB Notice that ∗∗ is an immediate consequence of proposition 0.8. Indeed,

Fid and Fψ = f are conjugates of −id. Therefore, θ = ψ ◦ id−1 = ψ is an odd
function.

0.1 Appendix

Theorem 0.11 The only monotonically increasing everywhere defined con-
tinuous function solution of Babbage equation f 2 = id is the identity function.

Proof: Define the binary relation

R(t, s) ≡ f(1/2(t− s)) = 1/2(t+ s)

Notice that by the property of f we could also write

R(t, s) ≡ f(1/2(t+ s)) = 1/2(t− s)
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We claim that if f is monotonically increasing, then R is functional, i.e.,
R(t, s1) ∧R(t, s2)−→s1 = s2.

Indeed, let s1 and s2 such that R(t, s1) ∧R(t, s2). Then either s1 < s2 or
s1 = s2 or s1 > s2. Assume the first alternative, the last one is similar. Then
x1 = 1/2(t−s1) > 1/2(t−s2) = x2. On the other hand f(x1) = 1/2(t+s1) <
1/2(t+s2) = f(x2) contradicting the fact that f is monotonically increasing.

Notice that
(∗) y = f(x) iff R(y + x, y − x)

Since y = f(x) iff x = f(y) (from Lemma 0.2 and the fact that f is its own
inverse in this case),

(∗∗) x = f(y) iff R(y + x, y − x)

From (∗), it follows that

(∗∗∗) R(f(x) + x, f(x)− x)

and from (∗∗),
R(y + f(y), y − f(y))

Replacing the dummy variable y by x,

(∗∗∗∗) R(x+ f(x), x− f(x))

From (∗∗∗) and (∗∗∗∗) and the functionality of R, x = f(x) for all x.
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